
ELSEVIER Information and Software Technology 39 (1997) 561-578

INFORMATION
AND

SOFTWARE
TECHNOLOGY

Distributed multimedia synchronization specifications using M2EST

Chung-Ming Huangav*, Ye-In Changb, Chih-Hao Lin”, Jhy-Shiou Chen”
“Laboratory of Multimedia Networking (LMN), lnstitufe of Information Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.

bDepr. of Applied Mathematics, National Sun Yat-Sen Universi@, Kaohsiung, Taiwan, R.O.C.

Received 6 November 1996; accepted 24 March 1997

Abstract

In order to properly schedule related multimedia objects, synchronization relationships of multimedia objects should be pmcisely specified
and dispatched. Each multimedia presentation schedule contains two parts: (1) the state-transition control part, which specifies intra-medium
and inter-media synchronization information, and (2) the data variables part, which specifies the dynamic aspects of the state-transition
control for dealing with jitter and skew. In this paper, we propose a specification language for specifying multimedia synchronization. The
language is called M*EST, which represents the MultiMedia Extended State Transition. M’EST can handle both the state-transition control
part and the data variables part in multimedia presentation scheduling. Using M*EST, the temporal behavior of each medium stream is
handled by an actor extended finite state machine (EFSM). The temporal relationships among media streams are handled by a synchronizer
EFSM. Synchronizer and actors perform multimedia presentations cooperatively. The corresponding synchronization schemes, including
both intra-stream and inter-stream synchronization schemes, which rectify the random networks delays caused on distribuied presentation
environment, can also be specified using M*EST. 0 1997 Elsevier Science B.V.

Keywords: Multimedia systems; Distributed multimedia synchronization; Formal specification languages

1. Introduction

With advances in all areas of computer science, it is time
to integrate advanced techniques to have new computing
environments. ‘Multimedia systems’ is one of the typical
computing platforms that results from the new consideration
[1,2]. Multimedia systems, which combine text, graphics,
image, audio, video, and/or animation, enhance the repre-
sentation of information. A multimedia data object always
consists of different information media (1) that are input
from different media bases, which may be located remotely,
and (2) that should be displayed concurrently on different
locations, which may be on different devices. Thus, display-
ing multimedia data objects should have precise coordina-
tion among these media in order to have smooth and correct
presentations. In other words, multimedia synchronization,
i.e. the temporal relationships among the media to be pre-
sented, is the key issue for having smooth multimedia pres-
entations [3,4].

Currently available media can be classified into two
types: one is the static type and the other one is the continu-
ous type. Static media, e.g. text, still images, and graphics,
have no temporal property themselves. The temporal

* Corresponding author. E-mail: huangcm@locust.iie.ncku.edu.tw

0950-5849/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved
PII SO950-5849(97)00012-8

properties of static media are synthetically defined by appli-
cations. Continuous media, i.e. audio, video, and animation,
essentially consist of sequences of data units. There are
embedded temporal properties in continuous media. In dis-
tributed environments, since it is very hard to have constant
delays from the commencement to the end of a multimedia
presentation, jitter and skew phenomena always exist during
presentation [5]. As a result, there are two types of multi-
media synchronization, i.e. inter-media synchronization and
intra-medium synchronization. Inter-media synchronization
maintains the requirements of the temporal relationships
between two or more media, such as lip-synchronization.
Intra-medium synchronization controls the displaying
schedule (rate) of one medium’s composed data units’. If
network delays are not constant, some schemes, e.g. block-
ing and restricted blocking schemes [6], can be used to
resolve the synchronization problems.

Currently, a lot of models/languages have been proposed
to formally describe temporal relationships in multi-
media presentations [7-lo]. We roughly classify these
models/languages into two types. The first type belongs to
state-transition specifications, e.g. the object composition
Petri net (OCPN) model (6,101, which is based on the
Petri net model [11,121 and the data-flow-graph model [7].
The state-transition specifications use the concept of ‘state’

562 Chung-Ming Huang et alAnformation and Sofrware Technology 39 (1996) M-578

and ‘transition’ to describe temporal relationships of multi-
media objects. The state-transition specifications can
represent the control part precisely, but the data part
cannot be represented clearly. The other type is programming-
language-based specifications [8,9]. Using the program-
ming-language-based specifications, all of the temporal
relationships are described by a set of procedure-based
statements, which are executed sequentially or in parallel.
The programming-language-based specifications can
specify the dynamic behaviors of synchronization
controls in detail. However, the state-transition control
part cannot be precisely identified because programming-
language-based specifications lack a general syntax to
describe the state-transition control part.

Based on our proposed Extended Finite State Machine
(EFSM) based multimedia synchronization model [131,
this paper proposes a hybrid formal script language that
provides mechanisms for specifying both the state-transition
control part and the dynamic behaviors part in multimedia
synchronization. The hybrid specification language is called
M’EST, which represents the MultiMedia Extended State
Transition. The use and proposal of M’EST is inspired by
Estelle [14,151, which is an IS0 Formal Description Tech-
nique for formally specifying communication protocols.
That is, M2EST is a modification/extension of Estelle. In
M’EST, (1) the control part is realized by a set of EFSMs,
and each EFSM contains a number of state-transitions, and
(2) the dynamic behaviors part is realized by using some
programming-language-based, i.e. Pascal-like, statements.
Temporal relationships among presented data objects can
be preciseIy specified using M’EST. The state-transition
part in an M2EST specification describes synchronization
controls; the programming-language part in an M2EST
specification operates on related context variables to specify
the dynamic aspects of the state-transition part for dealing
with jitter and skew.

Using M2EST, each individual medium stream is repre-
sented as an EFSM, which is called an actor EFSM, and the
synchronization among media streams is also handled by an
EFSM, which is called a synchronizer EFSM. Each actor
EFSM controls intra-medium synchronization. The syn-
chronizer EFSM controls inter-media synchronization.
The synchronizer holds information about temporal rela-
tionships among all streams, and each actor denotes one
stream and controls the data flow of the associated stream.
The communication between synchronizer and actors is
message-passing through defined channels. Since M*EST
contains the capability of programming-language-based
descriptions, the synchronization schemes can also be for-
mally specified using M2EST.

In a distributed multimedia synchronization environment,
an M*EST specification uses the client-server model to
describe the presentation of the multimedia objects. When
a remote client selects one scenario for the presentation, the
server site transfers media objects to the client site accord-
ing to the scenario. At the server site, the server sends

multimedia objects according to the scenario and control
messages. At the client site, the client receives multimedia
objects and presents these objects according to the scenario
and control messages. In the current M’EST system, the
synchronization environment is on the top of the transport
layer, which is currently TCP/IP over asynchronous transfer
mode (ATM).

The rest of this paper is organized as follow. Section 2
briefly introduces the language constructs of M2EST and the
related knowledge for applying M*EST to multimedia
synchronization. Section 3 presents the distributed synchro-
nization control architecture, and the M2EST-based specifi-
cations for distributed multimedia synchionization. Section
4 introduces synchronization schemes for dealing with
random network delays. Section 5 gives the development
issues of the M’EST system. Section 6 contains some dis-
cussion and concluding remarks.

2. The language construct of M’EST

An M*EST specification consists of a set of hierarchical
cooperating entities. Each entity is described as a module.
Fig. 1 shows the abstract format of an M”EST-based multi-
media scheduling protocol specification. The actual behav-
ior of each module is described by a set of submodules, or an
Extended Finite State Machine (EFSM) at the innermost
level. Each module interacts with other modules by
exchanging messages through channels. All of the modules
are executed in parallel. A channel is defined as a bidirec-
tional first-in-first-out (FIFO) pipe. A channel transmits
messages between two connected interaction points (ips)
that are allocated in modules. Modules A and B can
exchange messages through a channel that links two inter-
action points x and y, in which x and y are in A and B
respectively. Each EFSM consists of a set of transitions.
Each transition consists of a from state, a to state, a when
clause (input event), a provided clause (the predicate), a
priority clause, a delay clause, and a list of Pascal-like state-
ments that describe actions. A when clause represents
an input event. A provided clause consists of a set of
Boolean expressions, A delay clause is represented as
delay [t,i,,t,,,]. A priority clause is represented as priority
n, where n represents the priority level. If there is no priority
clause, the priority is middle. The action part, which is
delimited by keywords begin and end, can contain some
output events and a number of Pascal-like statements that
operate on context variables. Each EFSM can be repre-
sented as a nine-tuple (C,S,sO,V,E,T,P,A,S), where

l C is the set of messages that can be sent or received,
l S is the set of the states,
l SO is the initial state,
l V is the set of context variables,
l E is the set of predicates that operate on context

variables Cprovided clauses),

Chung-Ming Huang et al./lnformation and So&are Technology 39 (1997) 561-578 563

Specification

; Type Definitions
! Channel Defmitions
i ~...~h.~ei ..~

ii byuser:
: : by provider:_____._...._._...
,..

Module header bdiruImns
...

. . .

i ip: ._.._.___......_____..~
_,_______...._____............,..

Module Body Defmitions

: Modules, Types, Variables, States, Statesets Definitions :
i Initialized Part for the body ...

... 5 . . ;
; .
: :’
: :
: :

i ;
:
: :
: :
: :
: :
: :
: :
: :
: :
: :

kansitions Definitions
__._.___._...._____..
Tratl

frON
to
when
provided

delay
priority

begin

(A&m: Pascal-like Statements)
: :
: :
: :
: enn :

...

Specification Configuration Definitions

Module Variable Definitions
.._____.___._..._._..,.._..._.__.....__....____.........................~ __.._____..____..___....................................___._______..

Initialized Part for the spccitication

i Initialize Module Variables with Nodule bodies i
__....___...__._.___...~

i

;......‘...........“.....“....““...‘”..”...”’.’.....“.....~ :

i Channel Connection Definitions
: :
: :

_.__________________................................_...____1

._
,.,.,.____.___...___..-.-........

Fig. I. The abstract format of an M*EST-based specification.

l T is the set of time intervals (delay clauses),
l P is the set of priority clauses,
l A is the set of actions that operate on context variables,
l 6 is the set of transition functions, where each transition

function can be formally represented as follow: S X C X
E(V) X P X T+ C x A(V) X S

A transition can be executed when the condition part is
true, i.e. (1) the input event is available, (2) the predicate is
true, (3) its priority is the highest among executable transi-
tions. Let the delay clause be [tmin,tmax]. When the condi-
tions are satisfied, the transition can be executed after t +
t,in and should be executed before t + t,,,, where t is the
time the associated EFSM enters into the transition’s head
state. If tmin is equal t0 tmax, it means that the corresponding
transition should be fired at t + t,i”.

Each module has a number of interaction points for com-
municating with other modules. The links of interaction
points are classified into two types:

. attached: two interaction points are attached when
the associated two modules have parent/children
relationships;

l connected: two interaction points are connected when
the associated two modules have sibling relationships.

An M*EST specification and each module inside the
specification mainly contain three definitio’ns: type and
channel definitions, module header definitions, and module
body definitions. Type definitions define ssome declared
structure types, variables’ types, constant definitions, etc.
Channel definitions define channel types, and the corre-
sponding input/output messages. Each channel is associated
with two roles, e.g. user role and provider role. An
interaction point ip that is declared with cha.nnel type C’s
user (provider) role can output the messages that are
associated with C’s user (provider) role, and input the
messages that are associated with c’s provid.er (user) role.
Some examples are as follows:

channel VCSAatS (User, Provider); module SSYN;
by User: Transmit; DisResp; ip
by Provider: Over(Vend: integer); SSIPI: VCSAatS(User)

ConInd; BUFFER [2];
SSIP2: ACSAatS(User)
BUFFER [2];
SSIP3: ICSAatS(User) BUFFER [2];

where interaction point SSIPl in module SSYN uses chan-
nel type VCSAatS with role User, i.e. SSIPl can output
messages belonging to the User role, e.g. message Transmit
in the above example, and can input message:s belonging to
the Provider role, e.g. message Over in the above example.
Each interaction point is associated with an input buffer,
which is denoted by BUFFER[n] and n is the buffer size.
Depending on the delay, jitter, bandwidth, synchronization
schemes, etc., different buffer sizes can be assigned.

A module header definition can specify auributes, inter-
action points, channel definition, the types of exchanged
messages, etc. The attributes of modules are assigned as
follows:

l The outermost specification module, i.e. the whole
specification, is attributed as CENTRAILIZED for the
centralized environment case, or as DISTRIBUTED
for the distributed environment case.

l When the outermost module is attributed as DISTRI-
BUTED, modules in the second hierarchy are attributed
as SOURCE for the server site, in which media bases are
located, or as DESTINATION for the client site, in
which media information is received for displaying.

l The innermost module is non-attributed.

A module body definition includes declaration part,
initialization part, and transition part. The declaration part
declares (sub-)modules, module variables with their
associated module types, interaction points, structure
types, variables, functions/procedures, states, etc. The

564 Chung-Ming Huang et al./Informarion and Software Technology 39 (1996) 561-578

initialization part specifies the initial configuration, i.e. the
initial state, the initial values of variables, the assignment of
module variables with the corresponding module bodies, the
connection information of attached and/or connected inter-
action points etc., of the module (EFSM) that is associated
with the module body. The transition part specifies the tran-
sitions of the module associated with the module body.

For the outermost module, i.e. the specification module,
the specification configuration, which is denoted by the
‘Specification Configuration Definitions’ in Fig. 1, mainly
contains two parts: module variables definition and the ini-
tialized part for the specification module. Module variables
definition declares module variables with their associated
module types. The initialized part for the module initializes
module variables with the associated module bodies and sets
up the channel connections, i.e. the two interaction points
that are attached or connected.

connected to the peered interaction point :SSPi at the source
site; (iii) an interaction point DAIPi (SAIPi) of each actor is
connected to the interaction point DSIPi (SSIPi) of the syn-
chronizer at the destination (source) site, where i = l,...,n.
At the source site, actor EFSMs collect media units from
source devices when the related media streams are ready,
and the synchronizer EFSM issues the signal for the
commencement of transmission. Actor and synchronizer
EFSMs at the destination site cooperatively coordinate the
presentation.

The complete formal syntactic definition of M*EST is
explained in reference [161.

3. M2EST-based formal specifications of distributed
multimedia synchronization

In distributed environments, two sets of EFSMs are Essentially, there are four synchronization control archi-
required for M*EST-based formal synchronization specifi- tectures in distributed environments. Fig. 3 shows the
cations, one for the source site and the other for the destina- abstract configurations of these four architectures. The
tion site. The corresponding M*EST specification is first type, which is depicted in Fig. 3(a), has no synchroni-
attributed as DISTRIBUTED at the outermost level; two zation controller at both the destination site and the source
modules, in which the one attributed as DESTINATION site. The second (third) type has a client (server) synchro-
represents the destination site’s module and the other one nization controller at the destination (source) site. In this
attributed as SOURCE represents the source site’s module, case, there is some coordination during media displaying
are specified at the second level; synchronizer EFSMs and (transmission) at the destination (source) site. But there is
actor EFSMs are specified at the third level. Fig. 2, in which no coordination at the source (destination) site. The fourth
MMSynchronization, Client, and Server are the identifiers type has a server and a client synchronization controller at
of these modules, shows the abstract M’EST-based specifi- the source and destination sites respectively. Coordination
cation architecture that is used in distributed environments. can be invoked during media displaying/transmission at the
In distributed environments, each actor at the destination destination/source sites respectively. Depending on (1) the
site should be able to communicate with its peered actor available computing and communication [environment, e.g.
at the source site via networks. With reference to Fig. 2 whether the global clock exists or not, (2) the available
for the following explanation, the communication is equipment, i.e. low-end and cheaper or high-end and more
achieved by the following configuration: (i) an interaction expensive, set-top boxes or computers, (3) the required
point of each actor is attached to its parent module, i.e. DAi qualities of presentations etc., different multimedia appli-

(SAi) is attached to DSPi (SSPi) at the destination (source) cations can adopt one of the four synchronization

sites; (ii) an interaction point DSPi at the destination site is control architectures to achieve their own expected

Module Server SOURCE;

Fig, 2. The abstract M*EST-based specification architecture in distributed environments.

Chung-Ming Huang et al./lnfonnation and Sofmare Technology 39 (1997) 561-578 565

r

Media Display
-1 I-

Media Display
Pmcc.ssn I-

(a)

1 Synchronization 1

MediaTransmit

(cl W

Fig. 3. The abstract configurations of the four synchronization control architectures.

presentations.’ For convenience, we use the fourth architec-
ture for explanation.

Depending on the underlined networking environments
and protocols, various computing and networking resources
are required to achieve the expected presentation qualities.
Let the underlined networks be ATM-based. In order to
maintain the continuity, multimedia applications can toler-
ate errors that result from packet corruption or loss without
retransmission or correction [11. ATM-based networks have
low cell lost/garbled rates, and it is expected that there is no
bursty cell loss. When a (some) cell(s) is (are) lost/garbled,
the corresponding place(s) at the medium unit, e.g. a video
frame, which consists of a lot of cells, can be filled with
some default or derived information. Thus, we assume that
all of the media units will not be lost, but may be presented
with some minor erroneous information.2

Fig. 4(a) shows a display-time bar chart of a multimedia

’ For applications with multiple destination (source) sites, e.g. n-party
video conferencing, each destination (source) site has one set of EFSMs.
With n destination sites, media information is broadcast to these n destina-
tion sites. With n source sites, n-set of media information sent from n-set of
EFSMs at these n source sites are received by the associated set of EFSMs
at the destination site.

*This scheme is suitable for uncompressed data or compressed data
whose adopted compression techniques are intra-medium-unit-based, e.g.
JPEG. For compressed data whose adopted compression techniques are
inter-media-unit-based, e.g. MPEG, different schemes should be used
because a faulty cell in a medium unit will affect not only the current
medium unit but also the following k media units.

presentation in a distributed environment. There are four
presentation stages in the video stream and the audio stream
respectively, and two presentation stages in the image
stream. The interaction sequence of the presentation is
depicted in Fig. 4(b). The corresponding M2EST-based
formal specifications of actors and Synchronizers of the
presentation are depicted (1) in Fig. 5, where a circle repre-
sents a state and an arrow represents a transition, and (2) in
the appendices, where the statement when @mess (output
@mess) represents mess is input (output) fr,om (to) inter-
action point ip of the EFSM.3

Since two sets of actors communicate with each other via
networks, some transitions for connection setup and for dis-
connection are needed in each actor EFSM and each synchro-
nizer EFSM. With reference to Fig. 5 and Appendices A, B, C
and D, which contain the contents of transitions, and the
corresponding interaction sequences depicted in Fig. 4(b),
(1) transitions T1, T2, T3, and T4 of the synchronizer at the
destination site, (2) transitions T1 and T2 of the actors at the
destination site, (3) transitions T,, T2, and T3 of the synchro-
nizer at the source site, and (4) transition T, of the actors at
the source site are used to have the connection setup.

Two sets of EFSMs that are geographically separated
cooperatively achieve distributed multimedia, presentations

3 For simplicity, T represents TRUE and F represents FALSE in this
paper.

566 Chung-Ming Huang et al./lnfomation and Software Technology 39 (1996) M-578

Bart Chart

Video

Audio

Video 1 Video2 Video3 Video4 1
Music1 Music2 Music3 Music4

Image Slide1 Slide2

w : DSlPj l : DAIPi 0 :SAi n :SSIPi

. :DAi 0 :SAIF’i i= 1,2,or3

(b)

Fig. 4. (a) The display-time bar chart of a multimedia presentation; (b) the

corresponding interaction sequence.

after all EFSMs have executed the initialization transitions units when the ‘Transmit’ message is received. For pre-
for connection setup. The synchronizer at the source site orchestrated presentations, transmission schedules are
issues the transmission signals in transitions T4, T7, TI ,, always pre-decided according to the associated networks
and T14, i.e. sending ‘Transmit’ messages to actors, which protocols and the required presentation qualities. The

are depicted in Fig. 5(d), and waits for the ‘Over’ messages, time, i.e. T(stuge,counter) - T,, specified in delay clauses

which are sent from actors, in the corresponding transitions. of transition T3 which are depicted in Appendix C, is used to

Each actor at the source site starts to transmit media control the transmission time of each medium unit. An

T2 T3 T6 T9 TlO

T4 T7 Tll

T13 T16 T17 T20 T21

T14 T18

(a>

Tl

(b)

T13
Tl

T12

T3 T6 TLO

T12 T15 T16 T19 T20

T13 T17 T21

(4
Fig. 5. (a) The synchronizer EFSM at the destination site; (b) the actor
EFSM at the destination site; (c) the actor EFSM <at the source site: and
(d) the synchronizer EFSM at the source site.

Chung-Ming Huang et alAnformation and Software Technology 39 (1997) 561-578 567

example of a transmission schedule is as follows: (1) the
delay time for the very first medium unit of each stage, i.e.
T(i,O) - T,, is 0; (2) the delay time is (l/e) - T,, for the other
media units, i.e. T[ij],j # 0, where ~9 is the presentation rate
and T is the computing overhead, including the overhead of
transmitting a medium unit and the overhead of other com-
putation in the action part of T3, The delay clauses may not
be required for live presentations, e.g. video conferencing,
because actors immediately transmit media units that are
generated from the live media generators.

The synchronizer at the destination site notifies actors to
receive media units and to display these media units by
sending ‘Act’ messages in transitions Tg, T,, T12, and Tk5,
which are depicted in Fig. 5(a). An actor sends an ‘Over’
message when a presentation stage is finished. In Appendix
A and Appendix D, variables VIDstage, AUDStage, and
IMAstage denote the current presentation stage of video,
audio, and image media respectively; variables Vend,
Aend, and Iend denote currently finished presentation stage
of video, audio, and image media respectively, variables
VIDplay, AUDplay, and IMAplay denote the presentation
status of video, audio, and image media respectively. When
a video, audio, or image presentation stage is finished,
VIDplay, AUDplay, or IMAplay becomes TRUE.

In Appendix B and Appendix C, variable stage denotes
the stageth presentation stage; variable Length[stage] repre-
sents the number of media units to be presented at the
stageth presentation stage; variable counter is the counting
number of the just presented medium unit; variables
VIDframe, AlJDseg, and IMAdata contain the media units
that are stored in video, audio, and image media buffers
respectively. For static media, the displaying duration of
the corresponding static data unit is contained in the param-
eter ‘duration(stage, counter)‘, which is in the delay clause
of transition T4 that is depicted in Appendix B. In the delay
clause, T, represents the computing overhead, which is the
overhead of executing the action part of T4. Since the
display duration of the last piece of image in each
stage is contained in transition T5’s delay clause,
‘duration(stage,O) - T,’ is equal to 0. In the case of

continuous media, i.e. video and audio, a medium unit is
the minimum data component to be displayable. The corre-
sponding video, audio, and image media displaying system
routines are contained in procedures PlayVideo, PlayAudio,
and PlayImage respectively. Parameters position, width and
height in PlayVideo, PlayAudio, and PlayIm(age denote the
coordinate of the upper-left corner, the width, and the height
of the displaying window respectively. In video and audio
actors, ‘interval[iJ - T,’ in the delay clause of transition T4
is (1) equal to 0, if j = 0, (2) equal to (l/0) - T,, if j # 0,
where l/t? is a video frame’s or an audio segment’s presen-
tation time, e.g. l/30 second, and T, is the computing over-
head. The computing overhead is the overheald of executing
the action part of T+ Fig. 6 depicts the abstract time con-
figuration of executing media displaying transitions. For the
same reason as that in the image actor, i.e. the presentation
time of the last frame (segment) in the video (audio) actor is
contained in transition Ts’s delay clause, ‘interval[i,O] - T,’
is equal to 0. With reference to Fig. 4(b), racing conditions
may occur at the (Y point, i.e. an actor may receive message
‘MedTrans’ earlier. When racing occurs, message ‘Med-
Trans’ will be stored at buffers until message ‘Act’ is
received and the corresponding actor EFSM chances its
state to S2, according to the presentation schedule depicted
in Fig. 5.

When the presentation is over, network connections
should be released. The disconnection event is triggered
by the synchronizer at the destination site. When the final
presentation stage is finished, transition T19 in Fig. 5(a) is
executed. Transitions T19, TzO, Tz,, T22 and :Tz~ of the syn-
chronizer at the destination site, transitions Yri 2 and TI 3 of
the actors at the destination site, transitions Tlg, T19, TzO,
T2,, and Tz2 of the synchronizer at the source site, and
transitions T5 and T6 of the actors at the s’ource site are
used to have network disconnection.

4. Specifications of synchronization schemes

In distributed environments, multiple data streams are

a Ti,j Tij+~ L
.

i ii 11 I/ z
- - Tie

Tc Tc
tx tY tx tY

T ij - For static media: the displaying time length of “duration(i, j)“.
- For continuous media: the displaying time length of “interval(i, j)‘.

Tc - ‘lk overhead of executing the action part of T4.

t x - The time when the EFSM stars to execute the media displaying routines.

t Y - ‘Ibe time when the EFSM enters into the tail state of T4 and starts to select a transition to be executed.

Fig. 6. The time configuration of executing media displaying transitions.

568 Chung-Ming Huang et al./Information and Software Technology 39 (1996) 561-578

retrieved from the remote source site and displayed at the
destination site. Since the computing platform is in distrib-
uted environments, the random network delays impose
some jitter delays in each individual stream, or impose
some skews among streams at the destination site. Thus,
synchronizer and actors at the destination site must take
some commencement and synchronization schemes to com-
pensate or smooth abnormal situations.

The frequency of invoking re-synchronization processing
is application-dependent. Considering the following CNN
report presentation: at stage Z, the video displaying window
displays a reporter, who is giving some news about some
pandas in mainland China. At stage I + 1, the video dis-
playing window is switched to display some pandas, which
is accompanied by the reporter’s oral explanation. In this
situation, stage I should invoke the re-synchronization
process more often than stage I + 1. The main reason is
that human beings need more accurate synchronization for
the lip presentation, i.e. lip-synchronization. Thus, there
are two synchronization types, one is coarse-grain and the
other one is fine-grain, in which the re-synchronization pro-
cess is invoked very frequently. Coarse-grain synchroniza-
tion is suitable for synchronizing presentation stages.
When the related media need tight synchronization, e.g.
lip-synchronization between audio and video, fine-grain
synchronization should be invoked.

4. I. Commencement control

To have smooth commencement of a multimedia presen-
tation, some commencement schemes can be adopted. A
commencement scheme is as follows: the commencement
can be invoked when each medium stream has buffered at
lease one medium unit. To adopt the commencement
scheme, the action part of each transition T2 of the actor
EFSMs at the destination site, which is depicted in
Appendix B, should be modified: the statement ‘buffer-
filled(l)’ is added before the statement of ‘Output
DAIPi.ConConf;’ where i = I, 2, or 3. Procedure ‘buffer-
filled(l)‘, where ‘1’ identifies the number of media units to
be filled as 1, tests whether 1 medium unit is received or not.
When 1 medium unit is received, ‘bufferfilled(1)’ returns.

4.2. Coarse-grain synchronization schemes

Intra-medium synchronization controls the displaying
schedule of one medium’s composed data units. There are
three intra-medium synchronization schemes: blocking,
restricted blocking, and non-blocking.

l The blocking scheme: if an expected medium unit does
not arrive on time, the actor suspends its presentation
until the medium unit arrives.

l The restricted blocking scheme: if an expected medium
unit X does not arrive on time, the actor blocks for a
predefined interval 6. If medium unit X arrives during

the interval 6, the actor still displays X; otherwise, if X
does not arrive during the interval 6, lthe actor skips the
demanded medium unit X but displays the most recently
received medium unit.

l The non-blocking scheme: If an expected medium unit
does not arrive on time, the actor immediately redisplays
the most recently received medium unit. The re-display
procedure is repeatedly executed until the expected
medium unit arrives.

The actor EFSMs that are depicted in Fig. 5(b) in fact
adopt the blocking scheme. During presentation, each actor
is suspended at state S2 till the corresponding medium unit
arrives. When the expected medium unit arrives, which is
contained in message ‘ MedTrans’, transition T4 is executed.
The restricted blocking and non-blocking schemes can be
formally specified using M’EST by augmenting some tran-
sitions and/or states into original EFSMs. For simplicity, we
use the restricted blocking scheme as an example.

To keep the continuity property, the blocking scheme is
not suitable for video media. The restricted blocking scheme
can be adopted. Based on the video Actor EFSM depicted in
Fig. 5(b), the restricted blocking scheme is achieved by
adding transitions T6 and T,, and modifying transitions T3
and T,:

IT31
from S 1
to s2
when DAIPl .Act

begin
counter: = 0;
replay: = 0;

end

IT61
from S2

to s2
priority low
provided counter < > 0
and counter < Length[stage]

delay [interval(stage,counter) - T, +
r,,interval(stage,counter) - T, + rR]

begin
PlayVideo(oldframe);
counter: = counter + 1;
replay: = replay + 1;

end

IT41
from S2
to s2
delay [intervahstage, counter) -
T,,interval(xage,counter) - T,]
when DAl.MedTrans(VIDframe)
begin
PlayVideo(VIDframe);

oldframe: =: VIDframe;
counter: = counter + 1;
end

(T7)
from S 1
to Sl
provided replay > 0
priority high

begin
adjustbuffeipointer(replay)
end

Based on the added/modified transitions, the restricted
blocking scheme is achieved as follows: if the video actor
stays at state S2 for fR time units more, the video actor gives
up waiting for the demanded medium unit but displays the
most recently received medium unit. Transition T6 is in
charge of the re-displaying action. Variable counter,
which denotes the number of displaying frames, is increased
by 1 when transition T6 is executed once. Variable replay
denotes the number of re-displaying in a stage, i.e. the num-
ber of executing transition T6 in a stage. The priority

Chung-Ming Hung et al./lnformation and Software Technology 39 (1997) 561-578 569

clause ‘priority low’ in T6 is used to resolve the collision
condition: when the expected medium unit arrives at the due
time, i.e. both transitions T4 and T6 become executable, T4 is
still the selected transition to be executed. Transition T4 is
modified to record the latest received medium unit, i.e.
‘oldframe: = VIDframe’. Transition T3 is modified to set
the initial value of replay as 0. Transition T7 is used to skip
the lately received media units in order to play the right
media units in the next presentation stage, i.e. adjust the
bufferpointer using procedure ‘adjustbufferpointer()’ to
the right medium unit.

The purpose of inter-media synchronization is to main-
tain the temporal relationships among streams. There are
three inter-media synchronization schemes: parallel-first,
restricted parallel-first, and parallel-last.

When the parallel-first scheme is adopted, all of the
related streams should keep pace with the first terminated
stream to conform synchronization. In other words, the
slower streams drop some media units to keep pace with
the fastest one.
The restricted parallel-first scheme is a modified parallel-
first scheme, in which some delay tolerance is allowed.
Let the delay tolerance be t , , When the restricted parallel-
first scheme is adopted, the synchronizer terminates all
actors’ execution at time t + t,, where t is the time the
synchronizer receives the first ‘Over’ message.
When the parallel-last scheme is adopted, the synchro-
nizer issues the signal for next presentation stage after
having received all actors’ ‘Over’ messages. In other
words, the faster streams wait for a while so that the
slower streams can keep pace with the faster ones.

These inter-media synchronization schemes can also be
specified using M2EST. For simplicity, the parallel-first
scheme is used as an example.

Based on the parallel-first scheme, the synchronizer ter-
minates all actors’ execution as soon as the first ‘Over’
message sent by an actor is received. Some transitions
should be added/modified in the synchronizer EFSM,
which is depicted in Fig. 5(a), to achieve the parallel-first
scheme. For simplicity, the modified transition, i.e. Tg, and
the added transitions, i.e. Tgr and Tlof, at states S, and S2 are
used for explanation. Added/modified transitions in other
states can be derived in the same way:

IT81
from S 1

to s2
provided (VIDplay = T)
or (AUDplay = T)

begin
if VIDplay = T
then output DSIP2.Stop;

else output DSIPlStop.,
endif
VIDstage: = VIDstage + 1;

IT9’1
from S2

to s2
priority high
when DSIPl .Over(Vend)
provided Vend < > VIDstage

begin
end

VW1
from S2

output DSIPl .Act;
VIDplay: = F;

AUDstage: = AUDstage + 1;
output DSIP2.Act;
AUDplay: = F;
end

to s2

priority high

when DSIPZ.Oven:Aend)
provided Aend i > AUDstage
begin
end

Transition Ts is modified to perform the required actions:
(1) the predicate is modified as follows: ‘VIDplay = T or
AUDplay = T’. Thus, when one of the transitions T6 and T7
at state St has been executed, transition Ts’s predicate
becomes true and T8 is executed. (2) The actions in T8
include transmitting ‘Stop’ messages to other actors in
order to force other actors terminating their current presen-
tation stages and having the next presentation stages. Colli-
sion conditions may occur: it is possible that actor X finishes
its current presentation stage during TS’S execution time, i.e.
X sends message ‘Over’ before receiving message ‘Stop’.
Thus, transitions Tgs and T,o’ are added to receive these
‘Over’ messages that are sent from the video actor and the
audio actor respectively, after the execution of T8.

When the parallel-first scheme is adopted, actors need to
add some transitions to receive the ‘Stop’ messages trans-
mitted by the modified synchronizer. The added transitions
for the video actor EFSM are as follows:

m31 IT91
from S2 from S 1
to s1 to SI
priority high when DAIPl .Stop
when DAIPl Stop begin

begin end
replay: = Length[stage] - counter + replay;

adjustbufferpointer(replay);
stage: = stage + 1
end

The modified specification for other actors can be derived
in the same way. Transitions Tg and TV can receive the
‘Stop’ message sent from the Synchronizer, in which Tg is
used to receive the ‘Stop’ message when the collision con-
dition occurs. The action part of Tg adjusts the bufferpointer
to the first medium unit of the next stage.

Let the sending rate and presentation rate be equal and the
commencement scheme be the one that is depicted in
Section 4.1. When the audio stream adopts the blocking
scheme and the video stream adopts the restricted blocking
scheme, the relationship among the buffer size, the maxi-
mum jitter J,,,, and the sending and presentation rate 13, and
the incurred intra-medium and inter-media asynchrony
anomalies are as follows. In order to guarantee the quality
of synchronization and avoid data loss, the transport proto-
col must allocate at least 1 + [.J,,,/0] buffer units to the
video stream that adopts the restricted blocking scheme, and
allocate at least 1 + [J,,/e] buffer units to the audio stream
that adopts the blocking scheme. The incurred maximum
intra-medium asynchrony anomalies for the video stream

570 Chung-Ming Huang et al./Information and Software Technology 39 (1996) 561-578

that adopts the restricted blocking scheme and for the audio
stream that adopts the blocking scheme are 8 + ,+I,,,,, and

~Jrnax respectively. The corresponding incurred maximum
asynchrony anomaly is the maximum value of 8 + “J,,,,, and

~Jmax [171.

4.3. Fine-grain synchronization schemes

Parallel-first and parallel-last schemes can be adopted for
fine-grain synchronization. For simplicity, the parallel-first
fine-grain synchronization control is used as an example.

The added/modified transitions, which are at state Ss, for
the Synchronizer EFSM are as follows:

(7’121
from S2

to s3
provided
(VIDplay = T)
and (AUDplay T)

and (IMAplay T)
begin
VIDstage:
= VIDstage + 1;

output DSIPl .Act;

(T13”)
from S3

to s3
when DSIPI .

Fineover(Vlineend)
provided (Vfineend <
> VIDIine)

begin
end

(T15’)
from S3

to s3
provided (VIDfineact =

T)
or (AUDfineact = T)

VIDplay: = F; (T14’)
AUDstage: from S3
= AUDstage + 1,

output DSIP2.Act; to s3
AUDplay: = F; when DSIP2,Fineover

(Alineend)
IMAstage: =’ IMAstage begin

+ 1;
output DSIP3.Act; AUDfineact: = T;

IMAplay: = F; end
VIDfine: = 1;
AUDfine: = 1; [T14”]

end from S3

to s3
(T13’) when DSIP2.FineOver

(Atineend)
from S3 provided Afineend <

> AUDfine

to s3 begin
when DSIPI.FineO- end

ver(Vfineend)
begin
VIDfineact: = T;
end

begin
if VIDfineact = T
then output DSIPZ.
FineStop;
else output DSIPl.
FineStop;

VIDfine: = VIDfine + 1;
output DSIPl.FineAct;

VIDfineact: = F,
AUDfine: = AUDfine +

1;
output DSIP2,FineAct;

AUDfineact: = F;

end

The added/modified transitions at other states can be
derived in the same way. Using the fine-grain parallel-first
synchronization scheme, transition Tr5v of the synchronizer
is executed when the synchronizer receives message ‘Fine-
Over’ from one actor: transition T15, (1) sends message
‘FineStop’ to the other actor in order to terminate the current
fine-grain synchronization cycle, and (2) sends message
‘FineAct’ to invoke the next fine-grain synchronization

cycle. Transitions T13” and TIN” are added to deal with the
collision condition.

Some transitions, i.e. TIO, Tit, T14, and T15, and a new
state S3 need to be added in the corresponding video actor
EFSMs.

U-10) IT141
from S2 from S2
to s3 to s3
priority low
provided (counter < > 0)
and (counter mod SynNo = 0)

when DAIPl FineStop
begin
skip: = SynNo - (counter mod

SynNo);
counter: = counter + skip;
adjustbufferpointer(skip);
end

begin

output DAIPl .FineOver(finestage);
tinestage: = finestage + 1;
end

1Tll)
from S3
to s2
when DAIPI .FineAct
begin

end

(Tl51
from S3
to s3
when DAIPl.FineStop

begin
end

The corresponding audio actor part can be derived simi-
larly. Let each fine-grain synchronization cycle be invoked
after every SynNo media units has been displayed, which is
controlled by the predicate ‘counter mod SynNo = 0’ in

. .
transitton Tlo. Transition Tlo sends message ‘FineOver’ to
notify the synchronizer that the current fi-ne-grain synchro-
nization cycle is finished. A new fine-grain synchronization
cycle can be commenced when one actor has sent the mes-
sage ‘FineOver’ to the synchronizer, and message ‘FineAct’
has been sent to each actor by the synchronizer in transition
T, 5 f of the synchronizer EFSM. When an actor receives the
message ‘FineAct’, i.e. transition T, r in each actor, the actor
starts to display newly arrived media units. When j =
k*SynNo, k = 1,2,3 ,..., the computing overhead T, in
‘interval(Q) - T,‘, which is in the delay clause of transition
T4 that is depicted in Appendix B, is changed. The comput-
ing overhead T, should include the execution time of transi-
tions T10 and T1 ,. Transition T14 calculates the number of
media units to be skipped, and adjusts the buffer pointer to
the right medium unit for the next fine-grain synchroniza-
tion cycle. Transition T15 is used to receive the ‘FineStop’
message when the collision condition occurs.

4.4. Other specijcations

The transitions parts of the actor and synchronizer
EFSMs are specified and explained in the previous subsec-
tions. The corresponding M2EST specifications also include
the following parts.

1. Channel definitions: channels between the synchronizer
and actors at the source site, between the synchronizer
and actors at the destination site, and channels between

Chung-Ming Huang et al./Informarion and Soflware Technology 39 (1997) 561-578 571

actors at the source site and actors at the destination
site.
Module header definitions for the synchronizer, i.e.
DSYN, and for actors, i.e. DACTl, DACT2, and
DACT3, at the destination site; module header defini-
tions for the synchronizer, i.e. SSYN, and for actors,
i.e. SACTl, SACT2, and SACT3, at the source site;
and module header definitions for the destination and
source models, i.e. client and server.
Module body definitions: each of these can contain the
declaration part, the initialization part, and the transition
part. There is one module body definition for each
module, i.e. (1) SSYN-BODY, SACTl-BODY,
SACT2SODY, and SACT3BODY for modules
SSYN, SACTl, SACT2, and SACT3 respectively at
the source site, (2) DSYN-BODY, DACTl-BODY,
DACTZ BODY, and DACT3-BODY for modules
DSYN, DACTl, DACT2, and DACT3 respectively at
the destination site, and (3) SERVER-BODY and
CLIENT-BODY for the server module and the client
module respectively. The declaration part declares
some types, variables, etc. The declaration part of the
SERVER-BODY (CLIENT-BODY) includes (1) the
corresponding synchronizer and actors submodules
(EFSMs) definitions at the source (destination) site,
which have been described previously, and (2) the
module variables definition of the SERVER-BODY
(CLIENT-BODY), depicted in Table 1, column a
(Table 1, column b). The initialization part sets up the
initial status of the module body, including variables’
initial values, the initial state, the channel links
configuration, etc. The initialization part of the
SERVER-BODY (CLIENT-BODY) is depicted in
Table 1, column d (Table 1, column e). The associated
transition part with different synchronization schemes of
synchronizers and actors is presented in Appendices A,
B, C and D and the previous subsections.

Table 1
Some of the other specifications

(a) (b)
-

Cc)

4.

5.

5.

The whole specification module configuration definitions
part for the specification module, i.e. the MMSynchroni-
zation module, defines module variables with the asso-
ciated module definitions, sets up module variables with
the associated module bodies, sets up the ,channel links
configuration etc., as depicted in Table 1, column c.
Other type/constant definitions, function procedure defi-
nitions, etc.

Development of the M’EST system

Fig. 7 shows the abstract architecture of the M*EST-
based multimedia synchronization specification and execu-
tion environment. There are four layers: (1) an M*EST
editor in the application’s user interface, (;I) an M*EST
compiler, (3) the embedded computer environment, (4) the
underlined computer networks. Users of the associated
multimedia applications can use the provided :M*EST editor
to specify the presentation schedule, the duration for each
presentation stage, the transmission and presentation rates,
the intra-medium and inter-media synchronization points,
the coarse-grain and fine-grain synchronizal:ion schemes,
and the associated parameters, e.g. the restricted blocking
time interval etc.

The M*EST compiler is a suite that consists, of an M*EST
translator, which translates M’EST specifications to C
codes, a linker, a loader, etc. The M*EST compiler mainly
consists of a token scanner, a syntax parser and some code
generator routines. The token scanner and the syntax parser
are generated by using UNIX standard utilities LEX and
YACC, respectively. LEX generates a token scanner by
using a lexical specification as an input. YACC receives
the M*EST grammar specification, which is the M*EST
BNF. For each parsed grammar, there is a C-code generator
that generates the corresponding C-code.

The M*EST compiler translates M*EST specifications to
the target executable programming language, i.e. the C

Cd) (e)

modvar modvar modvar

SouS: SSYN; De&: DSYN; D: client;

SouAl: SACTl; DesAl: DACTl; S: server;

SouA2: SACT2; DesA2: DACT2; initialize
SouA3: SACT3; DesA3: DACT3; begin

init D with CLIENT-BODY;
init S with SERVER-BODY;

connect D.DSPl to S.SSPl;

connect D.DSP2 to S.SSP2:

connect D.DSP3 to S.SSP3;
end

begin
init SouS with SSYNC-BODY;
init SouAl with SACTI-BODY;
init SouA2 with SACT2-BODY;
init SouA3 with SACTS-BODY;

connect SouS.SSIPl to
SouAl.SAIPl;
connect SouS.SSIP2 to

SouA2.SAIP2;
connect SouS.SSIP3 to
SouA3.SAIP3;
attach SSPl to SouAI .SAl;
attach SSP2 to SouA2.SA2;
attach SSP3 to SouA3.SA3;

end

initialize

begin
init DesS with DSY NC-BODY;

init DesAl with DACTI-BODY;
init DesA2 with DACT2-BODY;
init DesA3 with DACT3-BODY;

connect DesS.DSIPI to
DesAl.DAIPl;
connect DesS.DSIP2 to
DesA2.DAIP2;
connect DesS.DSIP3 to
DesA3.DAIP3;

attach DSPl to DesAl.DAl;
attach DSP2 to DesA2.DA2;
attach DSP3 to DesA3.DA3;
end

572 Chung-Ming Huang et alAnformation and Software Technology 39 (1996) 561-578

The underlined computer networks
(Fore ATM-based networks system)

Fig. 7. The abstract architecture of M2EST-based multimedia synchroniza-
tion specification and execution environment.

language currently, then links and loads the associated
devices, networking etc., system calls to have the complete
executable code. The M*EST translator generates (1) one
program in the centralized case, or (2) two programs, one for
the destination site and the other one for the source site, in
the distributed case.

There are mainly three components in the generated
executable C code. (1) The transition dispatcher: these
select a transition to be executed according to the current
state of the EFSM, the current values of variables, the head
message of the input buffer, etc. The M*EST compiler gen-
erates one dispatcher for each EFSM module according to
the EFSM table that is built after parsing an M’EST speci-
fication. (2) The transition objects: the M*EST compiler
compiles each transition in an EFSM module to a condition
object and an action object. The dispatcher can execute the
selected action object according to the condition objects. (3)
The networking interface processor: the processor contains
the corresponding networking routines offered by the oper-
ating system and the networking interface hardware/software
system.

The main components in code generator routines are
depicted in Fig. 8. There are mainly three components: a
declaration part processor, an EFSM translator, and an
execution environment generator. The declaration part
processor consists of class generator that decides which
case, CENTRALIZED or DISTRIBUTED, is parsed, type/
constant generator, channel generator, module generator,
procedure/function generator, and state generator.

The channel generator constructs the channel information
table. In an M*EST specification, abstract channels are
transferred to two types of communication mechanisms.
One is the global shared variables for intra-machine
(intra-site) light-weight-process (LWP) communication
channels and the other one is UNIX sockets for inter-
machine (inter-site) communication channels. The channel
generator mainly generates a channel information table that
records the channel name, channel roles, and messages that

the channel can exchange. The message exchange is
achieved by an interaction point that represents one role
of one channel. In processing the interaction point message
exchange specification, the channel generator can find the
channel name, the channel role, and messages that are
allowed for the interaction point in the channel information
table, and then check if the message exchange is allowed.

The EFSM translator translates transitions, generates the
dispatcher C code, and adds the real-time control functions,
e.g. functions to measure the computing overhead of T, and
T, described in Section 3, to the C code. The EFSM trans-
lator consists of a transition dispatcher generator and a tran-
sition translator. The transition translator consists of a
condition object generator, an action object generator, and
a real-time control generator. These generators are
described as follows:

l Condition object generator: a transition can consist of
two components, the condition part and the action part.
The condition part has the following clause: FROM
clause, TO clause, PROVIDED clame, WHEN clause,
PRIORITY clause, and DELAY clause. The TO clause
and FROM clause are used to generate the EFSM table.
The PROVIDED clause is translated to a subroutine to
check the Boolean value of the Boolean expression. The
WHEN clause is translated to a subroutine to check one
specific message buffer. To process the PRIORITY
clauses, each PRIORITY clause is translated to a corre-
sponding priority number. A tra.nsition selection
mechanism compares the priority numbers of executable
transitions. When there are some executable transitions
with the same highest priority number, the default tran-
sition is the firstly checked transition. For a DELAY
clause, the compiler generates a timer for the transition.

l Action object generator: to process the action part of a
transition, the main work is to translate the Pascal state-
ments to the C code.

l Real-time control generator: the timer that is associated
with a DELAY clause is added by the real-time control
generator. The timer-create, the timer-settime, and the
timer-delete functions are all generated by the real-time
control generator which is supportecl by the real-time
library. The timer-create function creates a local
timer. Each timer is relative to a system clock as the
timing base. The real-time control can send a signal,
which is defined in the parameter of a timer-create
function, to the processor when the timer expires. The
timer-create CLOCK and event are translated to the
clock ‘CLOCK-REALTIME’ and signal ‘SIGALRM’
respectively. The timer-settime function sets the time
out interval for the timer. The timer used in the
timer-settime function is created by the timer-create
function, and the time interval defined in timer-settime
is relative to the clock of the timer defined in
timer-create. In addition to timer-create, timer-settime
and timer- delete functions, a real-time control also

Chung-Ming Huang et alAnformation and Sofhvare Technology 39 (1997) 561-578 513

M 2EST Specification

I

M 2EST Compiler

Declaration Part Processor

EFSM Translator

Execution Environment Generator

The Complete Executable C code

Fig. 8. The main components in the M*EST compiler.

includes a signal handler. The signal handler receives the
signal sent from the timer-settime and then enables the
delay transition. The timer-delete function removes a
timer.

l Transition dispatcher generator: the transition dispatcher
generator generates one dispatcher for each EFSM
module according to the EFSM table. The EFSM table
records the transitions that each state has, and the head
state and the tail state of each transition. The transition
dispatcher generator generates transition objects for
each EFSM module. Each transition object includes a

condition object and an action object. For each state of
the module, there are always more than one transition
object. The dispatcher executes these transition objects
in parallel, that is, (1) checks the condition part of each
transition object in parallel, then (2) selects one execu-
table transition by a transition selection mechanism
generated by the condition object generator.

The execution environment generator consists of an
EFSM generator, a network interface generator and an

574 Chung-Ming Huang el al./lnformation and Sofiware Technology 39 (1996) N-578

inter-LWP communication generator, as described below.
The EFSM generator maps a module name to a template
EFSM module. There are two communication types that are
used in M2EST multimedia synchronization specifications,
the inter-machine (inter-site) communication and the intra-
machine (intra-site) communication. The network interface
generator and the inter-LWP communication generator deal
with the inter-machine communication and the intra-
machine communication respectively.

l The EFSM generator: the EFSM generator generates
executable EFSM modules that are defined in a multi-
media synchronization specification. Each EFSM
module is a template and different module variables
can be mapped to the same EFSM module. The INIT
statement of an EFSM maps a module name to an
EFSM module. Since all EFSMs are considered to be
executed in parallel, the M*EST compiler translates
each executable EFSM module to an LWP, i.e. a
thread.

l The network interface generator: the network interface
generator deals with module connections in different
sites. In the M2EST compiler, module connections in
different sites are translated to socket specifications.
The network interface generator also generates message
handlers in socket specifications. A message handler
puts the messages, which are received from sockets
(interactionpoints), to the corresponding, interaction
points (sockets).

l The inter-LWP communication generator: the inter-
LWP communication generator deals with module con-
nections in a single site. In the M’EST compiler, module
connections in a single site are translated to a shared
global variables section.

In EFSM-based multimedia synchronization environ-
ments, all EFSMs are considered to be executed in parallel.
The condition checks of the outgoing transitions of an
EFSM’s current state are also executed in parallel. After
parsing an M2EST specification, the compiler translates
each EFSIA module to an LWP, i.e. a thread, that is pro-
vided in Solaris 2.x. Each transition condition check is also
mapped to a thread, such that all of them can be processed in
parallel. Fig. 9 shows the execution structure of M2EST in
the distributed environment. The currently underlined oper-
ating system is Solaris 2.x and the underlined networking
environment is Fore’s ATM-based networks.

6. Discussion and conclusion

M*EST is currently applied in an IS0 Open Document
Architecture (ODA) based distributed multimedia docu-
ment system for the news on demand (NOD) application.
The NOD system contains two main components: one is the

M*EST compiler and the other one is the authoring and
presentation system. The authoring component contains a
window-based spatial specification editor (SSE) and a tem-
poral specification editor (TSE). The SSE is in charge of
specifying the spatial layout of the components in a multi-
media document, and TSE, which is currently a text-based
editor and to be a window-based editor for M’EST, is in
charge of specifying the temporal relatialnships among the
components in a multimedia document. The internal data
structure is ODA-based, in which audio and video parts are
defined by ourselves because the current ODA profile does
not have audio and video definitions. The presentation com-
ponent is based on SUN’s window system, in which the
video-related and image-related parts are based on the
Parallax X-video system4 and the audio-related part is
based on the audio system embedded in SUN workstations.
The presentation schedules are controlled by the generated
C code of the corresponding M*EST specifications.

Formal and executable specification languages for multi-
media synchronization are urgently required. The role of
M2EST is as follows: an M*EST transla.tor can be bound
with multimedia operating systems, vendors’ high-speed
network interface cards, e.g. ATM-based network interface
cards, or vendors’ video/image capture/clisplay cards, e.g.
the Parallax video card. The networking interface processor
in the M*EST system uses the service primitives (system
calls) provided by the transport protocols, which are
embedded in the corresponding operating systems or the
corresponding high-speed network interface cards. The
video/image capture/display part invokes 1 he associated sys-
tem calls provided by the corresponding *operating systems
or the corresponding video/image capture/display cards.
Thus, multimedia application software., e.g. distributed
multimedia document systems, video conferencing etc.,
can have M’EST to generate the presentation schedule
controllers.

Many formal models have been propo;sed/discussed and
related systems have been developed #and evaluated in
formal development of communication protocols. Estelle
has been widely used in formal specifications of communi-
cation protocols. In the past decade, a lot of Estelle-based
methodologies and tools have been developed [18-201.
Researchers and developers for multimedia systems can
apply the corresponding practice and experience accord-
ingly. That is, a lot of research results, e.g. theories, formal
models, algorithms, and development methodologies, for
+Estelle-based and/or EFSM-based specification, verification,
implementation, and testing, can be directly or indirectly
applied to distributed/networked multimedia computing.

4 The media elements and files generated by the Parallax card contain
some control information, e.g. the size of each video frame. At the source
site, the generated audio part and the video part are separated, and control
information is stripped off such that only the raw data is transmitted in the
associated network channel. At the destination site, the size of each frame is
measured and appended with the data, and then our system calls Parallax
media display routines to play each medium unit.

D
es

tin
at

io
n C

on
tro

l P
ro

ce
ss

De
st

im
tio

8
sy

8e
hr

o8
ize

r

LW
P

G
lo

ba
l

Va
hb

le

se
ct

io
n

8
8

l

-

l
*m

Ne
tw

or
k

cb
an

ne
.l1

So
ur

ce
 C
on

tro
l P

ro
m

s

so
ur

ce
 S

F-

I
LW

P
I-

I
Ac

to
r1

1 Ad
or

n

G
lo

ba
l

Va
ria

bl
e

se
ct

io
n

l
8

l

Fi
g.

9.

 T
he

ab

st
ra

ct

ex
ec

ut
io

n
st

ru
ct

ur
e

of

M
’E

ST

in
 t

he

di
st

rib
ut

ed

en
vir

on
m

en
t.

576 Chung-Ming Hung et alAnformation and Software Technology 39 (1996) 561-578

The proposed M*EST language and the associated system
is a typical example of applying the formal Estelle-based/
EFSM-based protocol implementation approach to develop
distributed multimedia synchronization systems. The other
possible application is verification of synchronization
specifications. A lot of non-timed and timed protocol verifi-
cation methods/systems have been proposed/developed.
Two possible approaches of applying Estelle-based/
EFSM-based protocol verification methods/systems are as
follows: (1) modifying currently existing protocol verifica-
tion methods/systems according to the syntax/semantics of
the formal models/languages that are used for specifying
multimedia synchronization; (2) specifying multimedia
synchronization based on the exact Estelle or the corre-
sponding EFSM syntax/semantics. The second approach
may not be good because the original purpose of Estelle’s
and EFSMs’ language constructs was not designed for
multimedia synchronization. The first approach may be a
suitable approach. But some effort should be put into
modifying the corresponding protocol verification meth-
ods/systems based on the modified language constructs.

The main characteristics of our M*EST approach are as
follows.

A hybrid specification model is used, i.e. the control
part is specified using some state-transitions, and the
dynamic behaviors aspect of the control part is
specified using Pascal-like programming-language-
based statements.
A new synchronization control architecture is proposed,
i.e. each medium is represented as an actor EFSM, and a
synchronizer EFSM is used to control temporal relation-
ships among media. That is, the synchronizer EFSM
maintains the inter-media synchronization and the actor
EFSM handles the intra-medium synchronization. The
synchronization events are performed by message-pas-
sing between synchronizer and actors.
Synchronization schemes, e.g. (i) parallel-first, restricted
parallel-first, and parallel-last, which are used to main-
tain inter-stream synchronization, and (ii) blocking,
restrict-blocking, and non-blocking schemes, which are
used to keep intra-stream synchronization, can also be
formally specified to reduce the development cost.

The M*EST language and system are still under develop-
ment. Our future work is to have new versions of M*EST
that are able to achieve multimedia synchronization in the
interactive presentation environment and the multicast/
broadcast presentation environment.

Acknowledgements

This research is supported by the National Science
Council of the Republic of China under grant NSC 86-
22 13-E-006-093.

Appendix A Transitions of the synchronizer EFSM at
the destination site

IT1 I (T7,TlO,T14,T17] IT191
to so from Si from s4
begin to Si to s5
output when provided (VIDplay =
DSIPl .ConReq; DSIPZ.Over(Aend) T) and (AUDplay = T)
output DSIP2.Con begin and1 (IMAplay = T)

Req; AUDplay: = T; begin
output end output DSIPl.DisReq;
DSIP3.ConReq; where i = 1,2,3,4 VIDplay: = F;
end output DSIP2.DisReq;

{T&T151 AUDplay: = F;

tT2) from Si output DSIP3.DisReq;
from SO to S(i + 1) IMAplay: = F;
to so provided (VIDplay = end
when DSIPI .ConConf; T)
begin and (AUDplay = T) (T20)
VIDplay: = T; begin from S5
end VIDstage: = to s5

VIDstage + 1; when DSIPl .DisConf

IT31 output DSIPI .Act; begin
from SO VIDplay: = F; VIDplay: = T
to so AUDstage: = end
when DSIP2.ConConf; AUDstage + 1;
begin output DSIP2.Act; IT211
AUDplay: = T; AUDplay: = F; from S5
end end to 115

where i = 1.3 when DSIP2.DisConf

IT41 begin
from SO (Tl I,T18) AUDplay: = T;
to so from Si end
when DSIP3ConConf; to Si
begin when (T221
IMAplay: = T; DSIP3,0ver(Iend) from S5
end begin to S5

IMAplay = T; when DSIP3.DisConf

IT51 end begin

from SO where i = 2.4 IMAplay: = T;
to Sl end
provided (VIDplay = (Tl2)
T) and (AUDplav = T) from S2 IT231
and (IMApla; =- T)
begin

VIDstage: = 1;
output DSIPl.Act;
VIDplay: = F;
AUDstage: = 1;

output DSIP2.Act;
AUDplay: = F;
IMAstage: = I;
output DSIP3.Act;

IMAplay: = F;
end
IMAplay: = F;

(T6,T9,T13,Tl6]

from Si
to Si
when DSIPI .Over(-
Vend)

begin
VIDplay: = T;
end
where i = 1,2,3,4

to s3 from’s5
provided (VIDplay = to 5%
T) and (AUDplay = T) provided (VIDplay =
and (IMAplay = T) T) and (AUDplay = T)
begin and (IMAplay = T)
VIDstage: = begin
VIDstage + 1; end

output DSIPI .Act;
VIDplay: = F;
AUDstage: =

AUDstage + 1;
output DSIP2.Act;
AUDplay: = F:
IMAstage: =
IMAstage + 1;
output DSIP3.Act;

IMAplay: = F;
end

Chung-Ming Huang et al./Information and Software Technology 39 (1997) 561-578 577

Appendix B Transitions of the actor EFSMs at the
destination site

(T11 (T41 U72)
from S I from S2 from S 1
to Sl to s2 to Sl
when DAIPiConReq delay [T,,,,T,] when DAIPi.DisReq
begin provided counter < begin
output DAi.ConReq; Lengthrstage] output DAi.DisReq;
end when end

DAi.MedTrans

1T2) (Media) IT131
from S I begin from S 1
tOS1 playX(Media,position,- to Sl
when DAi.ConInd width,height); when DAi.DisInd
begin counter: = counter + begin
output 1; output DAIPi.DisReq;
DAIPi.ConConf; end end
stage: = I;

end IT51
from S2

IT31 to SI
from Sl delay [T,,,,T,I
to s2 provided counter =

when DAIPi.Act Length[stage]
begin begin
counter: = 0; output
end DAIPi.Over(stage);

stage: = stage + 1;
end

where i is (i) 1 for video actor, (ii) 2 for audio actor, and (iii)
3 for image actor; [T,,TU] is (i) [interval(stage,counter) -
T,,interval(stage,counter) - T,] for video and audio actors,
and (ii) [duration(stage,counter) - T,,duration
(stage,counter) - T,] for image actor; (X,Media) is (i)
(Video,VIDframe) for video actor, (ii) (Audio,AUDseg) for
audio actor, and (iii) (ImageJMAdata) for image actor.

Appendix C Transitions of the actor EFSMs at the
source site

U-11 IT31 IT51
from S 1 from S2 from S 1

to Sl to s2 to Sl
when SAiConReq provided counter < when SAi.DisReq
begin Lengthrstage] begin
output SAi.ConInd; delay[T,,T~l when SAi.DisReq

output SAIPi.ConInd; begin end
stage: = 1; output
end SAi.MedTrans(Media) [T6]

counter: = counter+l; from SI

WI end to Sl

from S I when SAIPi.DisResp

to s2 IT41 begin
when SAIPi.Transmit from S2; output SAi.DisInd

begin tos1 end
counter: = 0; delay tT,,T4
end provided counter =

Length[stage]
begin
output
SAIPi.over(stage);
stage: = stage + 1;

end

where i is (i) 1 for video actor, (ii) 2 for audio actor, and
(iii) 3 for image actor; [T,,TMI is [T(stage,coanter) - T,,T
(stage,counter) - T,]; Media is (i) VIDframe for video
actor, (5) AUDseg for audio actor, and (iii) IMAdata for
image actor.

Appendix D Transitions of the synchronizer EFSM at
the source site

(TlJ
from SO
to so
when SSIPl.ConInd
begin

VIDplay: = T;
end

IT21
from SO
to so

when SSIP2.ConInd
begin
AUDplay: = T;
end

IT31
from SO
to so
when SSIP3.ConInd

begin
IMAplay: = T;
end

(T41
from SO

tOSl
provided
(VIDplay = T) and
(AUDplay = T) and
(IMApIay = T)

begin
VIDstage: = 1;
output
SSIPl .Transmit;

VIDplay: = F;
AUDstage: = I;
output
SSIP2.Transmit;
AUDplay: = F;

IMAstage: = 1;
output
SSIP3.Transmit;
IMAplay: = F;

end

(TS,T&T12,T15}
from Si

to si
when SSIPI .Over(-
Vend)
bedn
VIDplay: = T;
end
where i = 1,2,3,4

(T6,l9,T13,T16}
from Si
to Si
when

SSIP2.0ver (Vend)
begin
AUDplay: = T;
end

where i = 1,2,3,4

(T7,T14)
from Si
toS(i + I)

IT181
from S4
to s5
provided (VIDplay = T)
and (AUDplay = T) and
(IMAplay = T)

begin
VIDplay: = F;
AUDplay: = F;
IMAplay: = F;
end

IT191
provided (VIDplay = T)from SS

and (AUDplay = T)
begin
VIDstage: =
VIDstage + 1;
output
SSIPI .DisResp

VIDplay: = F;
AUDstage: =
AUDstage + 1;
output
SSIP2.Transmit;

AUDplay: = F;
end
wherei= 1,3

.to s5
when SSIPl .DisInd
begin

VIDplay:T,
end

fT20)
from S5
to s5

when SSIP2.DisInd
begin
output SSIP2.DisResp
AUDplay: = T;
end

{TIO,TI7]
from Si

to si
when
SSIP3.0ver(Iend)

begin
IMAplay: = T;
end
where i = 2.4

IT21 1
from S5
to s5
when SSIP3.DisInd

begin
output SSIP3.DisResp;
IMAplay: = T,
end

(T111
from S2
to s3

(T221
from CL5

to S6
provided (VIDplay = T)

provided (VIDPlay = and (AUDplay = T) and
T) and (AUDplay = T) (IMAplay = T)

and (IMAplay = T) begin
begin end
VIDstage: =
VIDstage + 1;

output
SSIPl .Transmit;
VIDplay: = F,
AUDstage: =
AUDstage + 1;
output

SSIPZ.Transmit;

578 Chung-Ming Huang et d/Information and Sojiware Technology 39 (19%) 561-578

AUDplay: = F;
IMAstage: =
IMAstage + 1;

output
SSIP3.Transmit;
IMAplay: = F;

end

References

[1] B. Furht, Multimedia systems: an overview, IEEE Multimedia 1 (1)
(1994) 47-59.

[2] W.I. Grosky, Multimedia infonnatton systems, IEEE Multimedia 1 (1)

(1994) 12-24.
[3] G. Blakowski, R. Steinmetz, A media synchronization survey: refer-

ence model specification, and case studies, IEEE J. on Selected Areas
in Communications 14 (1) (1996) 5-35.

[4] R. Steinmetz, Synchronization properties in multimedia systems,
IEEE J. on Selected Areas in Communications 8 (3) (1990) 401-412.

[5] R. Steinmetz, Human perception of jitter and media synchroniza-

tion, IEEE J. on Selected Areas in Communications 14 (1) (1996)
61-72.

[6] M. Woo, N.U. Qazi, A. Ghafoor, A synchronization framework for

communication of preorchestrated multimedia information, IEEE
Network 8 (1) (1993) 147-155.

[7] M.C. Buchanan, P.T. Zellweger, Automatically generating consistent
schedules for multimedia documents, ACM Multimedia Systems 1 (2)

(1993) 55-67.
[8] R. Hamakawa, J. Rekimoto, Object composition and playback models

for handling multimedia data, ACM Mu1timedi.a Systems 2 (1) (1994)
26-35.

191 F. Horn, J.B. Stefani, On programming and s,upporting multimedia
object synchronization, Computer J. 36 (1) (19193) 4- 18.

[lo] T.D.C. Little, A. Ghafoor, Synchronization and storage models for
multimedia objects, IEEE J. on Selected Areas in Communications

8 (3) (1990) 413-427.
[I I] T. Agerwala, Putting Petri nets to work. IEEE Computer 12 (12)

(1979) 85-94.
[12] J.L. Peterson, Petri nets, Computing Survey 9 (3) (1977) 225-252.
[13] C.M. Huang, C.M. Lo, An EFSM-based multimedia synchronization

model and the authoring system, IEEE J. on Selected Areas in Com-

munications 14 (1) (1996) 138-152.
[14] S. Budkowski, P. Dembinski, An introduction to Estelle: a speciftca-

tion language for distributed systems, Computer Networks and ISDN
Systems 14 (1987) 3-23.

[151 IS0 Information Processing Systems, Open Systems Interconnection,
1987. Estelle: A Formal Description Technique Based on Extended
State Transition Model, DIS.9074.

[16] CM. Huang, C.H. Lin, Backus naur form of M2EST. Technical

Report MingSoft-TR-MM-I-96-6-1, Institute of Information, National
Cheng Kung University, June 19%.

[17] C.M. Huang, R.Y. Lee, Quantification quality-of-presentation (QOP)
for multimedia synchronization schemes, ACM Computer Communi-
cation Review 26 (3) (1996) 76-104.

[18] S. Budkowski, Estelle development toolset (EDT), Computer Net-
works and ISDN Systems 25 (1992) 63-82.

[19] CM. Huang, J.M. Hsu, An incremental protocol verification method,

Computer I. 37 (8) (1994) 698-710.
[20] CM. Huang, SW. Lee, Timed protocol verification for Estelle-

specified protocols, ACM Computer Communication Review 25
(3) (1995) 4-32.

